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Figure 1: The notion of shape difference defined in this paper provides a way to compare deformations between shape pairs. This allows
us to recognize similar expressions of shape A (top row) to those of shape B (bottom row), without correspondences between A and B and
without any prior learning process.

Abstract

We develop a novel formulation for the notion of shape differences,
aimed at providing detailed information about the location and na-
ture of the differences or distortions between the two shapes being
compared. Our difference operator, derived from a shape map, is
much more informative than just a scalar global shape similarity
score, rendering it useful in a variety of applications where more
refined shape comparisons are necessary. The approach is intrin-
sic and is based on a linear algebraic framework, allowing the use
of many common linear algebra tools (e.g, SVD, PCA) for study-
ing a matrix representation of the operator. Remarkably, the for-
mulation allows us not only to localize shape differences on the
shapes involved, but also to compare shape differences across pairs
of shapes, and to analyze the variability in entire shape collections
based on the differences between the shapes. Moreover, while
we use a map or correspondence to define each shape difference,
consistent correspondences between the shapes are not necessary
for comparing shape differences, although they can be exploited if
available. We give a number of applications of shape differences,
including parameterizing the intrinsic variability in a shape collec-
tion, exploring shape collections using local variability at different
scales, performing shape analogies, and aligning shape collections.
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Graphics—Computational Geometry and Object Modeling
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1 Introduction and Rationale

Comparing shapes is a fundamental operation in shape analysis and
geometry processing, with many applications to computer graphics,
including interactive shape design, shape search, and the organiza-
tion of shape collections. Most approaches to comparing shapes
reduce the comparison to a single number, a shape similarity score
or distance. These distances can be computed either by establish-
ing correspondences between the shapes (and therefore being able
to compare the geometry at a finer scale) or by computing certain
global shape descriptors and then estimating a distance in descriptor
space.

In many settings, however, we may desire a more detailed under-
standing of how two shapes differ that goes beyond a single simi-
larity score. Shapes can be complex objects and the very plethora
of shape distances that have been proposed is testimony to the fact
that no single scalar metric is able to satisfy all applications. For
example, we may be interested in where two shapes are different
and in how they are different. Such finer comparisons have long
been important in other fields, such as industrial metrology to as-
sess the quality of manufacturing processes, or in computational
anatomy, to separate normal organ variability from disease forms
for diagnostic purposes. In computer graphics, as shape collections
are getting larger and larger with more objects in each category,
these finer and more detailed shape comparisons are becoming im-
portant – and difficult to handle by coarse traditional techniques.

When computing maps or correspondences between shapes (includ-
ing shape parametrization) the minimization of measures of shape
distortion has long been used as a key optimization criterion. Yet
once the map is computed, the distortion information is not stored,
analyzed, or compared to that of other maps. In this paper we re-
verse this process. Starting from a map between two shapes, we
propose a novel notion of shape differences as seen by this map,
one that provides detailed information about how the shapes differ.
Thus our work leverages the recent flurry of activity in algorithms
for mapping shapes.

The main contribution of this paper is to give a rigorous mathe-
matical formulation of the concept of a shape difference under a
map and show how such shape differences can be computed, an-
alyzed, and compared – thus making shape differences concrete,
tangible objects that can be manipulated just like the shapes them-
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selves can. Our approach is based on the following insight: in clas-
sical Riemannian geometry, local distortions induced by a map are
expressed in terms of changes in the metric — which essentially is
equivalent to tracking the changes in inner products of tangent vec-
tors before and after these vectors are transported by the map from
the source to the target shape. In contrast, in this paper, we track the
changes in inner products of real-valued functions induced by trans-
porting these functions from the source shape to the target shape via
a functional map, as in [Ovsjanikov et al. 2012]. Our main obser-
vation is that all these changes can be captured by certain linear
operators (matrices), which we call shape differences; remarkably,
a single such operator works simultaneously for all pairs of func-
tions.

Our approach has several key advantages. First, we exploit the re-
cent functional map formulation of [Ovsjanikov et al. 2012], so our
notion of a map can be quite general and incorporate mapping am-
biguities due to symmetry, slippage, etc. Second, the approach is
intrinsic and is not affected by the embedding of the shape in 3D.
Third, when we have point-to-point correspondences, our shape dif-
ference can be directly related to classical local notions of geomet-
ric distortion, such as area or conformal distortion. Additionally,
under a few assumptions and allowing for certain equivalences, the
original map can be recovered from the shape difference. Fourth,
we define shape difference via a linear operator formulation and dis-
cretize it into a matrix or vector form, giving us access to a wealth
of linear algebra tools.

Our explicit representation of shape differences facilitates a number
of challenging shape analysis tasks. For example, given two pairs
of shapes, A, B and C, D, shape differences allow us to quantify
how much the change from A to B is similar to the change from C
to D, regardless of how similar A is to C. We can do these kinds
of “shape analogies” only because we can compute the “difference
among the differences” of the four shapes. For example, consider
the face shapes in Figure 1. While the two rows of faces shown
differ significantly, the relative changes between the undeformed
and deformed version of each are similar, which is captured by our
informative descriptors.

One of the key aspects of our shape differences is that they allow
both localizing and parameterizing the variability between a single
pair or of a collection of shapes. Thus, we can provide not only
a canonical descriptor for a difference between a pair of shapes
but also use it to analyze and visualize the source of the variabil-
ity, making the interpretation of results easier and more concrete.
In addition, we can now analyze the structure of shape collections
based on relating the differences between the shapes and not the
shapes themselves. We show several examples of the power of
this approach in the paper. In particular, unlike almost all existing
work, we can look at the variability of related shapes in a collection
without necessarily having explicit point-to-point or landmark cor-
respondences between the shapes (though we can use these when
we have them).

After discussing related work (Section 2), we show how to formally
define shape differences (Section 3) and compare them in shape col-
lections (Section 4). We then discuss the discretization and compu-
tational aspects of shape differences (Section 5), as well as their
key properties (Section 6). Finally we proceed to give a number of
applications of this notion, including parameterizing the intrinsic
variability in a shape collection, exploring shape collections using
local variability at different scales, performing shape analogies, and
aligning shape collections (Section 7).

2 Related Work

Shape differences and variability have been of interest in several
scientific communities over many decades. The modern approach,
generally termed Statistical Shape Analysis, exploits the notion
of Shape Space introduced by D.G. Kendall [Dryden and Mardia
1998], where a standard set of key points or landmarks is selected
on each shape and a shape is represented by its vector of land-
marks after normalizing for rotation, translation and scale. Multiple
shapes are analyzed jointly by first aligning their landmark vectors
and then using principal components analysis (PCA) to extract the
main modes of shape variation. Such learned shape variability mod-
els can also be used in segmenting shapes out of image or volume
data (see, e.g. [Cootes et al. 2001]), following the active contour
paradigm [Kass et al. 1988] from computer vision.

The medical research community, and especially brain anatomists,
have explored many variations along this general theme, trying to
compensate for the fact that exact landmarks may be hard to locate
either algorithmically or manually in noisy medical images (2D or
3D). Many other shape features and shape descriptors, local and
global, have been tried, including area, volume, spherical harmon-
ics, medial axes or skeletons, etc. (see [Gerig et al. 2001; Golland
et al. 2005] among many others) — see also the 2D image analysis
survey by F.L. Bookstein [Bookstein 1996]. In these works, shape
variability is effectively modeled by descriptor variability.

Another important issue is that not all variability carries the same
significance. For example, in a population of 3D models of hu-
mans, some models may be the same human in different poses.
If our goal is to understand the variability of human shapes, we
must then factor out the variability due to pose variations among
the subjects. Various approaches have been tried towards this end,
including PCA in a Riemannian symmetric space [Fletcher et al.
2004], multivariate tensor-based morphometry using holomorphic
forms [Wang et al. 2010], tensor ICA [Vasilescu and Terzopou-
los 2007], the use of Laplace coordinates for points [Wuhrer et al.
2012], and others [Nain et al. 2007]. Only recently has an approach
been proposed in these communities for comparing shapes intrinsi-
cally [Lai et al. 2010] using a spectral L2 distance, but the approach
suffers from the usual sign ambiguities (or more generally rotations
within an eigenspace) of the eigenfunctions in spectral embeddings.

In the geometry processing area there has been considerable work
in comparing shapes in an indirect way, in the setting of comput-
ing good maps between shapes. This is especially true in the con-
text of non-rigid shape matching where the goal is to recover the
best map according to some quality criterion (see e.g. [Bronstein
et al. 2006; Kim et al. 2011; Sahillioǧlu and Yemez 2011] among
a myriad of others). Perhaps the most common such criterion for
a map between a pair of shapes is preservation of pairwise quanti-
ties such as geodesic distances [Bronstein et al. 2006; Sahillioǧlu
and Yemez 2011] or spectral quantities such as the heat kernel (e.g.
[Sharma and Horaud 2010]). Generally, such measures of quality
are both expensive to compute and non-trivial to analyze, making
the intuitive understanding of the difference between shapes chal-
lenging. Another way of evaluating the distortion of a map, used
mostly in shape deformation and parametrization applications (see
e.g. [Schaefer et al. 2006; Ben-Chen et al. 2009], among others), is
to consider the local affine distortion introduced by the map at ev-
ery point on the shape, e.g., angular or area distortions. While such
local distortion measures are efficient to compute, they can often
be too noisy to be used directly for identifying problematic regions.
Finally, collections on human shapes were studied in [Allen et al.
2003; Anguelov et al. 2005; Hasler et al. 2009]. These papers ei-
ther explore pose and human shape variability separately, or they
use skeleton information to facilitate pose alignment.
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Our work is also related to the large volume of research on shape
similarity metrics, either map-based or descriptor-based, whose sur-
vey is beyond the scope of this paper. Shape search using on such
metrics has also been intensely studied, but mostly focused on dis-
criminating shapes under large-scale variations (e.g., cars from hu-
mans). The current effort is aimed at fine variability, which has
received less attention. In a related vein, the problem of how to
map shape descriptor variability back onto something semantically
meaningful on the original shapes was recently addressed in [Ovs-
janikov et al. 2011]. We also note that the topic of fine classifica-
tion/categorization has been popular in the computer vision com-
munity in the last few years (see, e.g., [Farrell et al. 2011] and the
references in the papers therein).

From our point view, all of these approaches suffer from certain
drawbacks. First of all, the notion of shape difference is not made
explicit — at best only a shape “distance” is defined. With that it is
impossible to understand precisely where the variation happens on
a shape, as each shape is treated as “atom” — typically, a point in a
fixed-dimensional Euclidean space. Furthermore, it is hard to com-
pare differences between shapes — to express “differences among
the shape differences,” for the same reason. Second, large amounts
of information about the shapes is ignored, and this can affect the
results. For example, the connectivity of the landmarks can be just
as important as their absolute positions. Third, linear methods such
as PCA are most often used — a notable exception being [Kilian
et al. 2007] — even when it is not clear that a flat approximation
to the shape space, either locally or globally is indicated. Fourth,
these works perform extrinsic comparisons between the shapes and
do not focus on their intrinsic geometry which is often what carries
the true semantics of the shape. Unfortunately, invariance to iso-
metric deformations is much harder to incorporate than invariance
to Euclidean transformations. Finally, unlike earlier works that re-
quire vertex-to-vertex or consistent landmark correspondences, our
use of the functional framework allows us to compare shapes whose
meshes may be entirely different.

Recently, we exploited the machinery of functional maps to evalu-
ate and visualize shape maps [Ovsjanikov et al. 2013]. Several of
the local distortion measures we employ here were also studied in
that paper, but that work has neither the matrix formulations nor the
emphasis of assessing shape differences in the context of a shape
collection that we introduce.

3 Shape Differences

Shape differences are linear operators (matrices in the discrete set-
ting) that capture the disparity between shapes M and N under a
given map (T or F below) between them. We define two types
of shape differences, one based on the area distortion and another
based on the conformal distortion, as induced by the map. In this
section, we introduce the abstract definition of shape differences,
applicable both in the continuous and discrete setting, and then
show how they can be computed in practice in Section 5.

3.1 Background and notation

Our formulation uses the functional maps framework [Ovsjanikov
et al. 2012] to represent maps between surfaces. Namely, given two
surfaces M and N , a map T : N → M between them induces
a map between functions F : L2(M) → L2(N), where L2(·) is
the set of square integrable real-valued functions on a surface. This
functional map F takes each function f : M → R and maps it
to g : N → R defined as g = F (f) = f ◦ T . As pointed out
in [Ovsjanikov et al. 2012], F is a linear transformation between
function spaces and, therefore, can be represented as a matrix in
the discrete setting. It is crucial to note that functional maps are

not limited to point-to-point maps, but provide a general notion of
a map that can incorporate mapping ambiguities due to symmetry,
slippage, etc. In the formulations below we will directly make use
of a linear functional map F : L2(M) → L2(N), regardless of
whether or not it is associated with a point-to-point map.

3.2 Formulation

Our goal in defining the shape differences between two shapes M
and N , given a functional map F is to quantify some measure of
distortion induced by F between L2(M) and L2(N). We com-
pare shapes by comparing corresponding measurements made on
the function spaces of the shapes. Following a Riemannian point
of view, a measurement over a shape is defined by an inner product
of functions on the shape. Recall that such an inner product h(·, ·)
is a bi-linear form taking pairs of functions into real numbers. In
this paper, for every surface S, we consider the following two inner
products on L2(S):

Definition 1 We define the area-based inner product as hSa (f, g) =´
S
f(x)g(x) dµ(x).

Definition 2 We define the conformal inner product as hSc (f, g) =´
S
∇f(x) · ∇g(x) dµ(x) on the space of differentiable functions

modulo constants.

These inner products are called area-based and conformal-based be-
cause of the following result (see the appendix for a proof):

Theorem 1 Given a pair of surfaces M,N and a bijection T :
N →M with the functional representation F , the following holds:

1. hMa (f, g) = hNa (F (f), F (g)),∀f, g if and only if T is locally
area preserving.

2. hMc (f, g) = hNc (F (f), F (g)),∀f, g if and only if T is con-
formal.

If the underlying map is not locally area preserving or conformal,
the stated equalities will not hold. It is natural to quantify the dis-
tortions induced by the map through the failure of these equalities,
perhaps by assigning a single number measuring the discrepancy.
Of course the precise notion of discrepancy will depend on the func-
tions f and g chosen. The challenge is to encode all these numbers
arising out of different f and g into a single richer notion.

Our main observation is that all these discrepancies can be captured
by certain matrices (linear operators), where these matrices are not
simply tables of numbers, but can be meaningfully manipulated and
compared as matrices. These operators effectively compensate for
the distortions caused by the map F to the measurement in ques-
tion and allow us to “pull back” the measurement hNa (F (f), F (g))
on N to a measurement made on M . Having all measurements on
a common space is advantageous, as we want to be able to com-
pare and compute differences between many measurements. Tech-
nically, we can accomplish this measurement transportation by us-
ing the following consequence of the classical Riesz representation
theorem from functional analysis (see the appendix for a proof):

Theorem 2 Given two shapesM,N, endowed with inner products
hM and hN respectively, and a functional map F : L2(M) →
L2(N), there exists a unique linear operatorDhM ,hN : L2(M)→
L2(M) satisfying:

hM (f,DhM ,hN (g)) = hN (F (f), F (g)) ∀f, g.

We will refer to the operator DhM ,hN as the difference between
hM and hN .

Map-Based Exploration of Intrinsic Shape Differences and Variability        •        72:3

ACM Transactions on Graphics, Vol. 32, No. 4, Article 72, Publication Date: July 2013



Figure 2: Given a pair of shapes M and N (left column) and
a functional map F , the shape difference V is a linear operator,
which for every function f on M produces another function V (f)
onM which intuitively encodes how much f is distorted by F (cen-
ter and right). Note that f1 is supported in an area that deforms
under the map, and f2 in an area that does not.

The linear operator D modifies g so as to exactly compensate for
the distortions introduced by the map F . It is remarkable that D is
a “universal compensator” — a single such operator works simul-
taneously for all functions f and g. Stated differently, D depends
only on the given inner products on M and N , and the functional
map F . It is also important to note that D is a linear self-map of
the space of functions over M, (see Figure 2 for an illustration).

Now, we can apply this theorem to inner products hMa and hNa
(resp. hMc and hNc ) to formally quantify the difference between
them. Namely, we define the area-based shape difference as:

VM,N,F = DhM
a ,hN

a
(1)

and conformal-base shape difference as:

RM,N,F = DhM
c ,hN

c
(2)

Since the map is usually clear from the context, we will often use
the abbreviated notation VM,N and RM,N .

We stress here that both VM,N and RM,N are not numbers but op-
erators. They yield numbers, once functions specifying the mea-
surement of interest are given. This flexibility enables a rich set
of applications as we will show in Section 7. Note also that two
shape differences VM,N1 and VM,N2 , even if N1 6= N2, both rep-
resent linear operators with the same domain (L2(M)) and range
(L2(M)). This allows us to compare shape differences even when
they are defined using maps to different shapes (see Section 4), as
hinted above.

Matrix representation: After a choice of a basis, the linear op-
erators defined above can be made more tangible by expressing
them in terms of matrices. Indeed, when dealing with discrete
shapes, the underlying function spaces are finite-dimensional vec-
tor spaces. Any inner product hM (·, ·) can always be represented
via a matrix HM such that: hM (f, g) = f>HMg, where f
and g are column vectors. Similarly, given the shape N with
an inner product hN , and a functional map F , we can represent
hN (Ff, Fg) = f>F>HNFg, for some matrix HN .

When these expressions for discrete inner products are plugged into
Theorem 2, we can obtain an explicit expression for the difference
operator D between these inner products:

D = (HM )−1F>HNF. (3)

Explicit formulas for both types of shape differences under various
basis choices are provided in Section 5.

Discussion: These particular shape difference formulations were
chosen for a number of reasons. First, isometric and conformal
maps play an important role in shape processing, and so it is im-
portant to capture these exact notions. While conformal maps
are directly characterized by our framework via the requirement
RM,N = I , where I is the identity map, note that isometric maps
are both area-preserving and conformal and so can be characterized
by the equalities VM,N = I and RM,N = I . These and several
more desirable properties of our shape differences will be discussed
in Section 6.

Second, inclusion of the map F : L2(M) → L2(N) into our for-
mulation allows the notion of the shape difference to change and de-
pend on the context of a particular application. For example, while a
purely geometric notion of shape difference can be obtained by tak-
ing the difference induced by some type of geometrically optimal
map, such a shape difference may not be optimal for studying, say,
differences in human brain shapes. In this latter case, our frame-
work allows use of the maps provided by a specialist to compute a
domain-specific shape difference. This is unlike, for example, vari-
ous notions of Gromov-Hausdorff distances [Bronstein et al. 2006],
which are often defined with respect to some “optimal” map.

Finally, when working with shape collections, it is crucial to be
able to compare the shape difference between a pair of shapes to
the shape difference between another pair of shapes. We discuss
this in the next section, and show that our shape difference matrices
can be rigorously compared to each other in a variety of circum-
stances without falling into the fallacy of “comparing apples to or-
anges.” Key to our approach is the ability to transport or move a
shape difference between two shapes to a third reference shape via
connecting maps, so as to make meaningful comparisons possible.

4 Differences in Shape Collections

One of the main advantages of the shape differences defined above
is that they not only encode detailed knowledge about the distortion
under a given map, but also allow distortion comparisons across
pairs of shapes, defining “differences between differences.” Here,
we outline how such comparisons can be carried out in three dif-
ferent scenarios. The discussion below is valid for both kinds of
shape differences; to avoid repetition we will focus on the area-
based shape differences.

The first scenario arises when for shapesM ,N1, andN2, one wants
to compare the shape difference VM,N1 to VM,N2 . As mentioned
earlier, both of these shape differences are linear operators with the
same domain and range L2(M), and thus can be directly compared
and even algebraically combined if needed.

The second scenario arises when one wants to compare the shape
difference VM1,N1 to VM2,N2 , where M1 6= M2, assuming that a
linear functional map G between L2(M1) and L2(M2) is known.
Note that VM1,N1 and VM2,N2 , cannot be directly compared be-
cause they are defined over different domains and ranges (L2(M1)
and L2(M2)). In order to make the comparison possible, we need
to first apply a change of basis transformation to one of the ma-
trices — this is where the cross map G : L2(M1) → L2(M2)
enters the picture, to allow the transportation of the difference. By
applying a matrix conjugation by G to VM2,N2 we bring it into a
common basis with the other matrix, and now the matrices VM1,N1

andG−1VM2,N2G can be compared and algebraically combined as
needed. To avoid computing the inverse of matrix G, one can also
compare matrix products GVM1,N1 and VM2,N2G.
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The last, third, scenario arises when one wants to compare the shape
difference VM1,N1 to VM2,N2 , but a mapping between M1 and M2

is not known. If we knew the mapG, we would have compared after
conjugating one of the matrices by G. However, since now we do
not know the map, our comparison needs to rely on the quantities
that are invariant under matrix conjugation. It is well known that
the spectrum of a matrix is such an invariant, and therefore, for
comparing the shape differences we can compare the spectra of the
matrices VM1,N1 and VM2,N2 .

In the third scenario, it is crucial that the shape difference matrices
are represented in terms of a truncated basis (e.g. low-frequency
Laplace-Beltrami eigenfunctions) spanning a subspace of smooth
functions. In essence, this adds a regularization on the unknown
cross map G, forcing it to be smooth. This is a benefit of the func-
tional map representation, see [Ovsjanikov et al. 2012] for a discus-
sion.

5 Computation

In this section we present explicit formulas for computing shape
differences between two triangle mesh surfaces M and N . As it
is clear from formula (Eq. 3), to compute the shape differences
we need to have access to three matrices: the inner product ma-
trices HM , HN and the functional map F . Since these matrices
depend on the choice of a basis for the functional spaces L2(M)
and L2(N), we will consider three options.

Before proceeding, let us fix our discretizations. For a surface
mesh S, we discretize the area-based inner product by hSa (f, g) =∑
x∈S f(x)g(x)AS(x) where AS(x) is the area element (Voronoi

area) associated with vertex x. The Laplace-Beltrami operator is
discretized as L = (AS)−1WS , where AS is the diagonal matrix
of area weights and WS is the stiffness matrix (e.g. the standard
cotangent weight matrix) [Pinkall and Polthier 1993]

Option 1: Here we use the finite element “hat function” basis for
both L2(M) and L2(N). In the indicator, hat function basis, the
matrix associated with the area-based inner products hMa and hNa
are simply the diagonal matrices of area weights at vertices, AM

andAN . Using formula (Eq. 3) the matrix associated with the area-
based shape difference is given by VM,N = (AM )−1F>ANF.

To derive the conformal-based shape difference, we use Stokes’ the-
orem

´
∇f(x) · ∇g(x) dµ(x) = −

´
f(x)∆g(x) dµ(x), where

∆ is the Laplace-Beltrami operator. This is valid in the dis-
crete case (even if there is a boundary) due to our choice of dis-
cretization. In the discrete case, this means that hMc (f, g) =
−f>AM (AM )−1WMg, and thus, the matrix associated with the
conformal-based shape difference hMc is given simply by −W ,
the stiffness matrix. This implies that the conformal-based shape
difference under the functional map F is given by1: RM,N =
(WM )−1F>WNF.

In a special case when the surfaces M and N have identical tessel-
lations conforming to the map T , the functional map F is simply
the identity matrix. Therefore, we obtain the following formulas:

VM,N = (AM )−1AN and RM,N = (WM )−1WN .

These formulas shed light into the nature of our shape differences.
For example, RM,N is seen to capture the change of the conformal

1The conformal shape difference operator is defined on L2(M) modulo
constants, and extended to the entire L2(M) by setting it to zero for con-
stants. In the discrete setting, the same effect is achieved by using pseudo-
inverses; all inverses appearing in formulas for R are pseudo-inverses.

cotangent Laplacian (without the area weights) and, as a result, of
the angles of the mesh.

Option 2: Here we use the orthonormal Laplace-Beltrami bases
for both L2(M) and L2(N). First note that the matrix associated
with area-based inner product is simply the identity matrix because
the Laplace-Beltrami basis is orthonormal. The matrix associated
with the conformal-based inner product on M is the diagonal ma-
trix DM = diag(−{λMi }), where λMi is the ith eigenvalue of the
Laplacian of M ; similarly for the conformal inner product on N .
Therefore, given a functional map F :

VM,N = F>F, and RM,N = (DM )−1F>DNF. (4)

Option 3: Here we use the orthonormal Laplace-Beltrami basis
forL2(M), and hat basis forL2(N). The resulting formulas can be
derived by essentially combining the derivations for the two options
above to yield:

VM,N = F>ANF, and RM,N = D−1
M F>WNF.

Discussion: The first option is presented here only for theoreti-
cal reasons, to show that simple and intuitive expressions exist in
cases when the shapes are identically tessellated. However, this
option is not practically useful: a) the obtained shape difference
matrices are sensitive to noise both in the meshes and the maps,
b) their sizes scale with the number of mesh vertices, and c) the
computation requires the pseudo-inverse of a large matrix.

The second option has the advantages of being generally applicable
and allows a smoothed approximation (by using a small (50-100)
number of low-frequency eigenfunctions) when dealing with im-
perfect meshes and/or correspondences. The third option allows a
smoothed approximation and speeds up computations in shape col-
lections where all of the meshes are identically tessellated. Indeed,
when computing shape differences from one shape to all others in
such a collection, the eigenfunction basis is needed on the source
mesh only. Due to basis truncation, both of the latter two options
result in small shape difference matrices, making joint analysis (e.g.
PCA in Section 7.1) feasible.

6 Properties

In this section we discuss a number of properties of shape differ-
ences: functoriality, informativeness, and localization and relation
to point-wise measures of distortion.

Functoriality: The shape differences behave functorially under
map inversions and compositions. To simplify the exposition let us
assume that one uses the Laplacian basis on all shapes, and so the
formulas (Eq. 4) apply. While we focus on the area based shape
differences, similar arguments are valid for the conformal ones.

We start with map inversion: given the maps F : L2(M) →
L2(N) and F−1 : L2(N) → L2(M) , we want the induced
shape differences satisfy VN,M = V −1

M,N . This cannot directly
hold because the involved matrices are expressed in terms of
different bases. We compute VM,N = F>F and VN,M =
(F−1)>F−1; next, we need to apply matrix conjugation to the ma-
trix VN,M to transport it into the same basis as VM,N ; this results
in F−1VN,MF = F−1(F−1)>F−1F = F−1(F−1)>, which in-
deed is the inverse of VM,N . Thus, after transporting to a common
basis, VN,M = V −1

M,N holds.

As for map compositions, given the maps F1 : L2(M)→ L2(N),
F2 : L2(N) → L2(K) and the composition F2F1 : L2(M) →
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L2(K), we want VM,K = VM,NVN,K to hold. We compute
VM,N = F>1 F1, VN,K = F>2 F2, and VM,K = (F2F1)>F2F1.
Note that only the matrix VN,K needs to be transported to the same
basis as the other matrices; this requires conjugation by F1, and
gives the matrix F−1

1 VN,KF1 = F−1
1 F>2 F2F1. Now, the sought

equality can be easily seen to hold.

The latter property can be used to speed up computations as fol-
lows. Suppose that we have a collection of shapes with func-
tional maps Fi : L2(M) → L2(Ni), and we compute all of the
shape differences VM,Ni . Now, the shape differences between any
pair of shapes Ni and Nj , after transporting to M , is given by
VNi,Nj = V −1

M,Ni
VM,Nj .

Informativeness: We have seen in Section 3.2, that VM,N = I
andRM,N = I , if and only if the underlying maps are area preserv-
ing and conformal respectively. Combining this with functoriality
properties we have: if VM,N,F = VM,N,G then the map F−1G is
area preserving (resp. conformal for R). This means, in particu-
lar, that the shape difference matrices encode the map up to an area
preserving, or conformal self-map. In other words, the shape dif-
ference matrices that we define are fully informative up to the given
notion of distortion.

Localization and relation to existing measures: When the
functional map F : L2(M) → L2(N) is associated with a point-
to-point bijection T : N → M , we can extract local distortion
information from the shape difference operators. Let ρ be a com-
pactly supported function on Ω ⊂ M (i.e. ρ(x) = 0 when
x /∈ Ω), then VM,Nρ and RM,Nρ only depend on the restricted
map T |T−1(Ω) : T−1(Ω) → Ω. In other words, if the map T is
modified outside the region Ω, then VM,Nρ and RM,Nρ would not
change.

To prove this for, say, the conformal shape differences, note
that for any f : M → R, the operator RM,N satisfies´
M

(∇f)(∇RM,Nρ) dµM =
´
N
∇(f ◦ T )∇(ρ ◦ T ) dµN =´

T−1(Ω)
∇(f ◦ T )∇(ρ ◦ T ) dµN , where the latter equality follows

from ρ being supported in Ω, and by bijectivity of T , ρ ◦ T being
supported within T−1(Ω). The last expression involves T only in
an integral over the region T−1(Ω), which proves the claim.

This property means that by selecting a function ρ supported within
some ROI, we can use VM,Nρ and RM,Nρ as descriptors of distor-
tion happening along this region. As a result, we can make localized
comparisons between different maps such as T1 : N1 → M and
T2 : N2 →M ; see Section 7.2 for an application.

Additionally, the area based shape differences enjoy the following
two properties, see appendix for proofs. Given a region Ω ⊂ M ,
and a function ρ : M → R supported within this region, the sup-
port of VM,Nρ lies inside Ω . Finally, by letting χ be the indi-
cator function of Ω (i.e. χ(x) = 1 if x ∈ Ω and 0 otherwise),
we can extract from VM,N the traditional measure of area dis-
tortion using the following formula: area(Ω)

/
area(T−1(Ω)) =

hMa (χ, χ)
/
hMa (VM,Nχ, χ) .

7 Applications

The shape differences provide a general framework with many po-
tential applications in computer graphics, computer vision, medi-
cal imaging, structural biology, and a number of other fields that
require precise comparisons between shapes. Here we explore a
number of prototype applications involving collections of 3D mod-
els.

7.1 Intrinsic Shape Space

Shape differences can be used to explore variability in a collection
of related shapes. For this purpose it is important to obtain a com-
mon representation that captures the landscape where the models
live, to determine the “average” shape, and to visualize where vari-
ability happens directly on the shapes. We choose to represent a
collection of shapes as a collection of shape differences from one
of them, what we term the “base” shape. Since shape differences
can be transported to different shapes, the choice of the base shape
is not at all critical — it is rather like choosing an arbitrary origin
when introducing a coordinate system. We will demonstrate that,
by applying Principal Component Analysis (PCA) to these shape
differences, we can extract the types of information outlined above.

First, we vectorize the area based and conformal shape difference
matrices, apply PCA, and depict each shape’s coefficients along the
two largest principal component directions. As usual, the vectors
determining the PCA directions are normalized to have unit vector
norm. Since we are working with matrices, this is equivalent to the
unit Frobenius norm of matrices. Due to this normalization, the xy-
coordinate ranges in the PCA plot are commensurable both within
and across plots.

Second, we obtain the visualization on the base shape of where
shape variability localizes. To this end, we convert the principal
components into matrices {Pi}; the amounts of variances explained
are {σ2

i }. For a given function f on the base shape, let ~f be its
vector representation in the basis. After normalizing ‖~f‖ = 1, it
is true that ‖Pi ~f‖ is small for all i = 1, 2, ..., then the distortion
that this function undergoes is similar between all the shapes. Note
that we are not discussing the average amount of distortion, but
rather the deviation of the distortion from the average. Now, we can
define an aggregate amount of this deviation over all the principal
components as∑

i

σ2
i ‖Pi ~f‖2 =

∑
i

σ2
i
~f>P>i Pi ~f = ~f>M ~f ,

where M =
∑
i σ

2
i P
>
i Pi; here the weighting by variances allows

giving more importance to more prominent principal directions. To
visualize what regions vary most between different shapes (again
not the regions of highest distortion, but of highest variability), for
every point p on the base shape, we compute the variance function
as var(p) = (~f>M ~f)1/2/‖~f‖ where ~f represents the delta func-
tion centered at p. In practice we replace the delta function by the
heat kernel computed at a small value of the time parameter.

Our first dataset (first column of Figure 3(a)) is comprised of 64 de-
formations of the unit sphere obtained by adding two protrusions to
the unit sphere using normal displacement. The sizes of protrusions
sample an equally spaced two-dimensional grid of values.

The PCA plots for area based and conformal shape differences
are shown respectively in the second and third columns of Fig-
ure 3(a). These plots uncover the grid structure of the underlying
shape space. The fact that the percent of variance explained by each
PCA direction (shown in parenthesis for each axis) nearly add up
to 100%, recovers the fact that deformations have two degrees of
freedom. The percent of variance explained for both PCA direc-
tions are almost the same, meaning that deformations in both of the
bumps have similar strength range. Since PCA centers data around
the average, we can find the average shape for this collection by
looking around the origin, which gives shapes 28, 29, 36, and 37 as
the average shapes; these are exactly the four shapes in the center
of the image depicting the collection (first column of Figure 3(a)).
The fourth column of Figure 3(a) is the visualization of variability
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(a)

(b)

(c)

. . .

. . .

. .
 .

. .
 .

1

57

8

64

Shapes in dataset: numbered
left to right, top to bottom

PCA on area-based
shape differences

PCA on conformal
shape differences

Variability
localization

for area

Variability
localization

for conformal

Figure 3: The proposed shape differences reveal the major variability in a collection of shapes as well as the locations (sources) of variability,
useful for visualization. Each row represents a different shape collection (left), followed by PCA performed on area-based and conformal
shape differences (middle) and visualization of the locations of variability color coded from red for high to blue for low variability (right).

amount (blue is small, red is large) on the base shape for both area
and conformal distortions, which are both correctly identified.

Figure 3(b) depicts the results on the galloping horse sequence that
was used as the frames in a video produced by Sumner and Popović
[Sumner and Popović 2004]. Both of the PCA plots reveal the ex-
pected circular “topology” of this dataset, and that this circle is tra-
versed twice. The xy-coordinate range for conformal plot is larger
than that of area based PCA plot. This hints that within this col-
lection there is more conformal than area distortion, which is likely
due to different parts of body moving relative to each other, induc-
ing higher conformal distortion than area distortion at the joints.
Finally, the visualizations of variability in the last column identify
the regions of variability correctly.

Figure 3(c) depicts the results on a collection of humans syntheti-
cally generated using the tools from [Hasler et al. 2009] as a black-
box. This collection involves a combination of pose change and
body shape variation. Namely, we sample a grid of shapes with two
modes of variation: 1) hips get larger and 2) the person raises arms.
Both of the PCA plots recover the two dimensional nature of the un-
derlying shape space. From the placement of mesh id numbers in

these plots we can see that the main PCA directions for area based
and conformal shape differences correspond to different modes of
variation: area PCA detects hips getting larger as the main PCA di-
rection, whereas the conformal main PCA direction corresponds to
the moving arms. This can also be seen by looking at the visualiza-
tions of variability in the last column. Namely, we see that the area
variability is maximal around the hips, but the conformal variability
is concentrated around the shoulders.

The contrast between the area based and conformal shape differ-
ences is more dramatically demonstrated by the following experi-
ment. We use a set of 218 shapes representing an approximately
conformal deformation of the Stanford bunny into a sphere. The
PCA plots for area and conformal based shape differences are over-
laid in Figure 4. The conformal shape difference is by two orders of
magnitude smaller than the area based shape difference. The pres-
ence of two notable PCA directions corresponds to the fact that in
the beginning of the sequence the deformation concentrates at the
ears of the bunny till they become rounded, and then the front of
bunny is rounded.

Since functional maps provide a more general notion than point-
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Figure 4: Approximately conformal deformation of a bunny into a
sphere. The PCA applied to shape differences confirms the presence
of large area distortion in contrast to small conformal distortion.

to-point maps, our framework is applicable in such more general
settings. Here, we show an example of applying shape differences
in the setting where only fuzzy correspondences between models in
the collection are available. A fuzzy correspondence between two
surfaces maps every point on the source surface to a probability dis-
tribution on the target. The corresponding functional map goes in
the opposite direction, and is obtained by convolving a function on
the target surface with the probability distributions. We generated
a set of such fuzzy maps between the deformed spheres of Figure
3(a) by centering a Gaussian distribution at the corresponding point
and adding noise. The first image in Figure 5 shows an example
probability distribution for a single point. Despite the noise, our
shape difference framework can correctly identify both the major
variabilities present in the collection and their locations.

7.2 Exploring Shape Collections

Another step in understanding and using shape collections is being
able to track variation of shapes on a finer level. There has been an
increasing interest in this topic as evidenced by the recent papers
[Ovsjanikov et al. 2011; Kim et al. 2012]. In this subsection we
adopt the shape exploration approach of Kim et al.: a user paints
one or several regions of interest on the shape, and then the col-
lection is sorted according to the shape similarity within the user
specified ROIs.

Our approach is based on the localization property of our shape dif-
ferences, see Section 6. We pick one of the shapes in the collection
as the base shape M . For a given ROI on any of the shapes, let
~ρ be its smoothed characteristic function expressed in terms of the
function basis on the base shape. For each shape Ni in the collec-
tion, the vectors given by VM,Ni~ρ and RM,Ni~ρ carry information
about the shape variability within this ROI. We concatenate these

vectors into one, and use it to interactively sort the shape collection
by similarity/dissimilarity along the ROI, and for operations such
as deformation magnification and interpolation. These experiments
were run on the SCAPE dataset [Anguelov et al. 2005] which con-
tains 71 poses of the same subject.

Figure 6 shows two examples (separated by whitespace) of faceted
exploration of human pose. In each of these examples, the first two
rows show the selected ROIs and shapes that are most similar to the
given shapes along these ROIs. In the third row, similarity along
both of the ROIs is sought.

In addition to faceted browsing above, our approach allows the in-
troduction of new exploration capabilities. First, the user may want
to see shapes that undergo several times the magnitude of deforma-
tion in N1 along the ROI relative to the base shape M . To this end,
we multiply the localized shape differences VM,N1~ρ and RM,N1~ρ
by the user specified amount, and sort the shapes in the collection
according to the proximity to these magnified differences. Figure 7
shows two examples of this capability. In the first example, the ROI
containing the knee is painted on a shape with a bent knee. Magni-
fying this difference with respect to the base pose, means having the
knee bent even more. The shapes retrieved by our method indeed
have the most severely bent knees in the dataset.

Another novel exploration capability is shape interpolation along
an ROI. Given an initial (N1) and final (N2) shape, together with
an ROI, we compute the vectors VM,N1~ρ and RM,N1~ρ for the ini-
tial shape, and similarly VM,N2~ρ and RM,N2~ρ for the final shape.
Next, we produce equally spaced sample vectors between these ini-
tial and final vectors. The shapes having closest vectors to these
sample vectors are retrieved. Figure 8 shows two examples of this
operation.

As a qualitative comparison to the approach of [Kim et al. 2012],
note that Kim et al. ROI exploration is based on rigidly aligning
the ROIs of shapes during the search time, whereas our approach
uses intrinsic quantities and is based on directly comparing vectors
VM,Ni~ρ and RM,Ni~ρ. Additionally, simply scaling/linearly inter-
polating these vectors leads to exaggeration and interpolation capa-
bilities, which are not as straightforward to formulate extrinsically.

7.3 Shape Analogies

One of the higher level cognitive operations central to human
thought process is constructing analogies. While very difficult to
imitate, this operation has received some attention in the image
processing context and has led to the concept of image analogies

Fuzzy map: each point on one
surface is taken to a probability

distribution on the other

PCA on area-based
shape differences

PCA on conformal
shape differences

Variability
localization

for area

Variability
localization

for conformal

Figure 5: Given fuzzy maps between deformed spheres of Figure 3(a), the shape differences correctly identify the major variability as well as
the locations of variability.
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ROI Output: shapes similar along ROI

Figure 6: Faceted browsing similar to Kim et al. [2012].

Rest ROI Output: magnified distortion at ROI

Figure 7: Magnification: given a rest pose (leftmost), and an input
shape (second) with an ROI, we find shapes that have 3-4 times the
distortion at ROI.

Initial FinalOutput: interpolating poses on ROI

Figure 8: Interpolation: given an initial pose (leftmost), and a
final pose (rightmost) with an ROI, we find shapes that interpolate
between the initial and final poses along the ROI.

[Hertzmann et al. 2001]. In this subsection we show that our shape
differences can be used to introduce the notion of shape analogies.

Given a pair of 3D modelsA andB, and another modelC, our goal
is to retrieve from the collection a shape D such that D relates to
C in the same way as B relates to A. In this paper we describe an
approach to this problem where “in the same way” is interpreted as
having the same or close shape differences. Two sets of experiments
will be presented, one when a map between A and C is available,
and another when such a map is not available.

We first explain how shape analogies can be obtained when a map
between A and C is available. Let be G the corresponding func-
tional map: G : L2(A) → L2(C). We start by computing the
area VA,B and conformal RA,B shape differences between A and
B. Next, for every shape X in our collection, we compute the
corresponding shape differences VC,X , RC,X between C and X .
Among all X , we select D as

D = arg min
X
‖VC,XG−GVA,B‖2F + ‖RC,XG−GRA,B‖2F ,

here we use the Frobenius norm. Note that to compare shape dif-
ferences we needed to carry out matrix conjugation for transporting
the differences to a common comparison ground, which in this case
can be achieved without resorting to inverses (see Section 4).

Figure 9 depicts two examples of analogies constructed using this
approach on SCAPE dataset. Here, the map between A and C is
known as all of the shapes in the dataset are tessellated in the same
way. In the first example (left), as one goes from A to B, the hands
get half raised. Therefore, we expect D to differ from C by hand
being half raised as well; and indeed our approach retrieves such a
pose from SCAPE. The second example involves raising the hands
fully, and again our approach succeeds in finding such a pose from
SCAPE. Note that the variety of retrieved poses are limited by the
dataset being employed.

Figure 10 shows a similar experiment but involving multiple analo-
gies based on the Cats and Lions dataset from [Sumner and Popović
2004]. Here the map between the base cat and base lion is known,
the cats are in correspondence and so are the lions. Shape A is the
base pose for the cat, and shape B is the base pose for the lion.
Then, for multiple shapes Ci (poses of the cat), we find the analo-
gies Di (poses of the lion). In this case, we embed the V matri-
ces after conjugation in a lower dimensional space using PCA, and
compute the distances in this space. Note, that we have recovered
all the correct matches between poses.

Figure 11 shows a similar experiment, using human poses from the
dataset of [Hasler et al. 2009]. Here, as opposed to the SCAPE
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Figure 9: Shape analogies in SCAPE: given shapes A, B, and C,
we find a shape D such that the shape difference D to C is close to
the shape difference B to A.

dataset, we have two humans (male and female) in different poses.
Shapes A and B are the poses shown in blue in the Figure. Sim-
ilarly to the cats and lions experiment, we retrieve multiple analo-
gies, by picking a different pose Ci for the male, and extracting the
matching pose Di of the female. In this case, the dataset contains
the ground-truth (which pose match) and, although matched poses
are relatively different, due to human interpretation of the pose in-
structions given, e.g. C1 and D1, we still recover the ground truth.

Our final set of experiments considers the case where a cross col-
lection map is not available. In this case, we cannot use the conju-
gation method in order to bring the shape differences to the same
common ground, and therefore we need to use a descriptor of the
difference which is invariant to matrix conjugation. We chose the
singular values of the V matrix as such a descriptor. Note, that now
we have considerably less information than when a cross map is
available, and therefore we need to regularize our experiment by
exploiting more of the data. Here we assume that we have to “par-
allel” shape collections with corresponding shape variants. Instead
of simply fixing A,B,C and searching for the best D such that “D
is to C like B is to A”, we find the best permutation of the shapes
which simultaneously best aligns all the shapes in one collection
with their counterparts in the other collection. Namely, given n
shapes, we compute the singular values of all the possible pairwise
maps, and use that as a descriptor. We compare this descriptor to
the singular values of all the possible pairwise maps in the other
collection. To be more precise, for every one of the possible n!
permutations we can compute a score measuring the agreement be-
tween the descriptors. This provides a ranking of the permutations,
which allows us to find all the analogies simultaneously.

Figure 12 shows the result of this experiment for two collections
taken from the dataset in [Hasler et al. 2009]. The first collection is
a group of humans in one pose, and the second is the same group of
humans in a different pose. Note that, as opposed to the experiment
shown in Figure 11 where we find variation between poses, here we
find variation between humans, which is much more delicate. The
figure shows in the top row the first collection, and in the second
and third rows the best two permutations. The shapes are colored
according to the ground truth, namely the same human has the same
color in all rows. As is evident in the figure, in the best permutation
we found the ground truth map, and aligned correctly the shape
collections. The third row is also meaningful, as the second best
permutation switches between the two females in the group, whose
differences are more subtle compared to the other humans. Note
that although the map between the two collections is available, it
was not used in this experiment.

Figure 10: Multiple shape analogies between the cats and the
lions. We find all the analogies — recovering the relationship be-
tween the poses of the cat and the lion.

Figure 11: Multiple analogies recover the corresponding poses of
the male and the female.

Figure 13 repeats this experiment for a subset of the shapes from the
TOSCA dataset [Bronstein et al. 2008]. There, poses of the cat and
the dog are not marked as corresponding, and in fact there are vari-
ous changes in the pose between the cat and the dog — for example
the tails are geometrically quite different. As in the previous fig-
ure, we show the first collection, followed by the color coded best
first and second permutations. Again, we can see that the best per-
mutation matched correctly between the poses, and the second best
permutation confused between similar shapes. This demonstrates
that the important information we recover is the relative change in
pose between the cats within themselves and the dogs within them-
selves, and there is no requirement for geometric similarity between
a cat and a dog.

Finally, note that Figure 1 shows another example of such space
shape alignment where a cross collection map is not available.

Compute time: We report timings on a laptop with 2.4GHz Intel
Core i7-2760QM processor and 4GB memory. The human dataset
in Figure 3(c) contains 64 shapes, each with 6.5K vertices; we use
Laplace-Beltrami bases on all of the shapes (Option 2 of Section 5).
It takes about 300s to discretize the Laplacians and to compute the
bases (64 eigenfunctions on the base shape, and 192 on remaining
shapes). Additional 20s are required to compute functional maps
and shape difference matrices (of size 64 × 64) between the base
shape and all others. The bunny dataset (Figure 4) contains 218
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Figure 12: Simultaneous analogies between all pairs in two col-
lections (five humans in two poses), without a cross map. The color
coding indicates the ground truth. The first row shows the first col-
lection, and the second and third show the best and second best per-
mutations respectively. Note that in the first permutation we have
recovered the ground truth, and the second permutation swapped
between the two females in the group, whose differences are more
subtle compared to the other humans.

Figure 13: Simultaneous analogies between all pairs in two col-
lections (five cats and five dogs from the TOSCA dataset), without
a cross map. Note that our best permutation (2nd row) recovers
the ground truth, and the second best permutation (3rd row) swaps
between two dogs in similar poses.

shapes, each with 14K vertices. We use eigenfunctions on the base
shape, and hat functions on all other shapes (Option 3 of Section
5). Discretizing Laplacians of all the meshes and computing 64
eigenfunctions on the base shape takes about 40s. Additional 10s
are spent computing functional maps and shape differences (of size
64 × 64) between the base shape and all others. These timings are
typical for all of the experiments reported in this paper.

8 Conclusion, limitation, and future work

We have shown a new formulation of the concept of shape differ-
ences and developed its mathematical properties. We also studied
how the formulation can be discretized and how shape differences
can be robustly and efficiently computed on meshed shapes. Shape
differences can themselves be compared and used to study shape
collections in new ways, allowing us to perform shape analogies or
to localize or parametrize the variability in a collection.

A limitation of our method is that it computes shape differences
based on externally supplied maps between shapes, and it therefore
depends on the quality of these maps. Current intrinsic map tech-
nology can handle well isometric and nearly isometric shapes with
some extensions to more general classes of deformations. As map-
ping techniques improve, we expect to be able to apply our shape

difference methods to more general classes of shapes as well.

In general, the quality of the information we get from our approach
depends on the quality and density of the shape maps we start with
— in other words, the quality by which we know the network defin-
ing the shape inter-relationships. What assumptions on this quality
allow us to extract what type of underlying shape space structure is
a topic that requires further investigation.

Spectral tools can be used on shape networks to extract functionals
on the shapes that are most preserved or most variable over the net-
work. Such functionals may aid various classification tasks, sep-
arating important from nuisance modes of variability. A lot also
remains to be done on the topic of exploiting shape differences to
align shape collections that only have parts with parallel structure,
both in the presence and in the absence of cross maps.
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SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399–405.

VASILESCU, M., AND TERZOPOULOS, D. 2007. Multilinear (ten-
sor) ICA and dimensionality reduction. Independent Component
Analysis and Signal Separation, 818–826.

WANG, Y., ZHANG, J., GUTMAN, B., CHAN, T., BECKER, J.,
AIZENSTEIN, H., LOPEZ, O., TAMBURO, R., TOGA, A., AND
THOMPSON, P. 2010. Multivariate tensor-based morphometry
on surfaces: Application to mapping ventricular abnormalities in
hiv/aids. Neuroimage 49, 3, 2141–2157.

WUHRER, S., SHU, C., AND XI, P. 2012. Posture-invariant statis-
tical shape analysis using laplace operator. Computers & Graph-
ics 36, 5, 410–416.

Appendix

Proof of Theorem 1. Note that in the discrete case this theorem
simply states that (1) a bijection is area preserving if and only if the
diagonal area matrices equal: AM = AN and (2) is conformal if
and only if the weight matrices equal WM = WN , which follows
simply because the cotangent function is bijective on (0, π).

In the continuous case, we are given two surfaces M and N , and a
bijective map T : N → M , such that

´
x∈M f(x)g(x) dµN (x) =´

x∈M f(T (x))g(T (x)) dµN (T (x)),∀f, g : M → R. By consid-
ering f = g indicator functions on a region Ω ⊆ N it follows
that Area(Ω) = Area(T (Ω)), meaning that T is locally volume-
preserving. Conversely, suppose T is volume-preserving. By def-
inition this implies that for any function h:

´
x∈M h(x) dµN (x) =´

x∈M h(x) dµN (T (x)). Setting h(x) = g(x)f(x) we get that T
preserves the area-based inner product.

Suppose now that T is a conformal map between two surfaces.
To simplify notation, suppose that we are simply given two Rie-
mannian metrics G1, G2 on M such that G2 = λ2G1 for some
smooth function λ. From local coordinate expression of the Lapace-
Beltrami operator, one has ∆G2f = 1

λ2 ∆G1f. Moreover, the vol-
ume form dVolG2 = λ2dVolG1 , and using Stokes’ formula we ob-
tain that

´
M
〈∇G1f,∇G1g〉 dVolG1 = −

´
M

∆G1fg dVolG1 =

−
´
M

∆G2fg dVolG2 =
´
M
〈∇G2f,∇G2g〉 dVolG2 for any pair

of functions f, g. The converse — preservation of conformal-
based inner product implies that the map is conformal — is proved
in [Schumacher 2013].

Proof of Theorem 2. This theorem is a consequence of general
Riesz representation theorem [Brezis 2010]. Namely, the presence
of the linear functional map allows us to think of the inner product
on shapeN as simply another inner product onM . Thus, given two
inner products h1, h2 on M our goal is to show that there exists a
unique linear map D, such that: h1(f, g) = h2(f,Dg),∀f, g. To
see this note that when g is fixed, h1(·, g) defines a continuous lin-
ear functional on the functional space. By the Riesz-Frechet The-
orem, there exists a unique element D(g) of this space such that
h1(f, g) = h2(f,D(g)), ∀f Moreover, D(·) is bijective and linear
by linearity of h1(f, ·).

Proof of Two Properties of V . Let T : N → M be the under-
lying bijective map, and let ρ be supported in Ω ⊂ M . For any
f ∈ L2(M), the operator VM,N satisfies

´
M
fVM,Nρ dµ

M =´
N

(f ◦ T )(ρ ◦ T ) dµN . Taking for f any function with sup-
port Ω′ ⊂ Ωc, gives

´
Ω′ fVM,Nρ dµ

M = 0, and so the sup-
port of VM,Nρ has to be contained in Ω up to a set of measure
0. This proves the first localization property for VM,N . Now
taking f = ρ = χ, the characteristic function of Ω, gives
hMa (VM,Nχ, χ) =

´
N

(χ ◦ T )(χ ◦ T ) dµN = area(T−1(Ω)). As
hMa (χ, χ) = area(Ω), this proves the relationship with the tradi-
tional measure of area distortion.
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